扩增子分析解读5物种注释 OTU表操作

  • A+
所属分类:生物信息学

现在我们获得了OTU表的基本统计信息,用less result/otu_table_tax.sum查看一下吧,内容如下:
Num samples: 27 # 样品数据
Num observations: 975 # OTU数据
Total count: 409647 # 总数据量
Table density (fraction of non-zero values): 0.464 # 非零的单元格
 
Counts/sample summary:
 Min: 2352.0 # 样品数据量最小值
 Max: 35955.0 # 样品数据量最大值
 Median: 14851.000 # 样品数据量中位数
 Mean: 15172.111 # 样品数据量平均数
 Std. dev.: 10691.823 # 样品数据量标准变异
 Sample Metadata Categories: None provided # 样品分类信息:末提供
 Observation Metadata Categories: taxonomy # 观察值分类:物种信息
 
Counts/sample detail: # 每个样品的数据量
OE4: 2352.0
OE3: 2353.0
OE8: 3091.0
OE2: 3173.0
OE1: 3337.0
OE5: 3733.0
OE6: 4289.0
OE9: 4648.0
OE7: 5185.0
WT3: 10741.0
WT8: 12117.0
WT6: 14316.0
WT2: 14798.0
WT7: 14851.0
KO1: 14926.0
WT9: 15201.0
WT1: 15422.0
WT5: 15773.0
WT4: 16708.0
KO2: 17607.0
KO6: 23949.0
KO5: 26570.0
KO8: 27250.0
KO4: 32303.0
KO7: 33086.0
KO9: 35913.0
KO3: 35955.0
biom的详细使用说明,可以biom查看具体的功能,如添加注释功能biom add-metadata --help可查看详细说明。也可阅读官网http://biom-format.org/
 
15. OTU表筛选
实验中会有各种影响因素,我们要综合各种背景知识来判断如何筛选数据表,起到去伪存真,去粗取粗,由此及彼,有表及理的来回答科学问题。数据筛选是会运行分析流程和数据分析师的分水岭。
 
看上面的的统计结果,样本数据量从2k-35k,我们应去除过小的数据量样本,提供更可能高的样品最低丰度的数据用于下游标准化分析。这里我们选择只保留数据量大于3000的样品。

  • 蛋白质组学业务咨询
  • 扫码咨询相关问题
  • weinxin
  • 代谢组学业务咨询
  • 扫码咨询相关问题
  • weinxin

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: